

Increased and accelerated age-related complications in HIV-infected patients

Giovanni Guaraldi Università di Modena

THE CHANGING SPECTRUM OF HIV CARE

1996 2005

Pre-HAART Early-HAART Late-HAART

Opportunistic infections AIDS cancers

Lipodystrophy Co-morbidities

Multimorbidity
Frailty & Disability

High prevalence of Co-morbidities (HANA) and Polypatholiogy in HIV infected aging cohorts

In Modena cohort Pp on the 50's was 20% in the AgeHIV cohort was 35% Pp prevalence was higher in cases than controls in all age strata

process.

Review Article

Is HIV a Model of Accelerated or Accentuated Aging?

Sophia Pathai, 1.* Hendren Bajillan, 2.* Alan L. Landay, 3.4 and Kevin P. High⁵

Accentuated Aging: cancer (and geriatric syndroms) occurs at the same ages but more often among HIV-infected participants than among HIV-uninfected comparators.

This configure a Premature aging

Accelerated Aging and accentuated aging: cancer (and geriatric syndroms) occurs earlier among HIV-infected participants compared with HIV-uninfected comparators and there are more cancer events.

Age at Cancer Diagnosis Among Persons With AIDS in the United States

Age distribution in the AIDS and general populations

Standardized incidence ratios (SIRs), were calculated as the number of observed cases in the AIDS population divided by the number of expected cases in the general population, adjusted for the underlying population structures.

Potential covariates and Confounders

Demographics

Age, gender, ethnicity, yrs education, socioeconomic, un/employment, etc.

NeuroPsych

HAND, dementia, depression, disposition/mood, substance ab/use, etc

Medical-Physion

Other meds, cardiometabolic risk, hepatorenal status, cancer BMD, lat/lean, endocrine and inflammtory markers, lifestyle, tobacco, rec. drugs, diet, physiscal inactivity, ADL, IADL, etc

HIV Related

Yrs HIV, AIDS dx, HIV med complication, CD4, plasma and CSF viremia, immune activation, co-infections, chronic inflammation, etc

Social Vulnerability aspects

Poverty, food security, Access to care, social justice, etc.

Aging vs aged patients: Prevalence and probability for multimorbidities increases with HIV duration

At any age, long-term infected people (ageing patients) had a 5-fold accentuated risk of multimorbidity than HIV-negative controls, while more recently infected people (aged patients) had an intermediate risk compared with the control group

Future challenges for clinical care of an ageing population infected with HIV: a modelling study

Mikaela Smit, Kees Brinkman, Suzanne Geerlings, Colette Smit, Kalyani Thyagarajan, Ard van Sighem, Frank de Wolf, Timothy B Hallett, on behalf of the ATHENA observational cohort

A geriatric definition of old-Age:

65-75 YRS: Youngest old

76-84 YRS: Old

>85: Oldest-old

Frailty has been proposed as a measure of biological (opposed to chronological) aging

83 years old; HTN, Hyperlipidemia, prior MI

83 years old; HTN, Hyperlipidemia, prior MI

This variable vulnerability among people of the same chronological age is known as **frailty**

WYSIWYG!

What you see, is what you get

Frailty as a deficit accumulation

- Frailty can be operationalized as deficit accumulation and can be expressed in a frailty index
- Can be summarised as a scale from Robust to Terminally III
- A frailty index derived from routinely collected clinical data can offer insights into the biology of aging using mathematics of complex systems

Trajectories of physical function in older subjects

Objective

We aimed to estimate levels of Frailty and its implications for HIV care in Italy up to 2030.

Falls and Instrumental Activities of Daily Living (IADL) were used as proxy of **geriatric syndromes** and **disability** in the geriatric population

Methods

- ✓ Geriatric age categories were chosen: <35, 35-49, 50-64, 65-75,
- ✓ An individual-based model of the ageing population of the Modena HIV Metabolic Clinic cohort (MHMC) was constructed using data collected between 2009 and 2015 from 2982 patients.
- ✓ The model follows patients enrolled to the clinic up to 2015 and generates new entries on a yearly basis up to 2030.

 Number, age and gender of new entries were modelled using trends observed in the period 2009-2015.
- ✓ The relationship between age and gender, falls and disability, observed in 2014-2015 at MHMC was postulated to constant over time.

FI distribution at MHMC

Distribution of frailty index scores at first visit. Bars represent 0.01 frailty index score groupings. Solid line indicates normal distribution.

Average frailty index score at each age. Lines represent exponential best fit. Solid line is men, dashed line is women.

Results

Socio-demographic, anthropometric and lifestyle characteristics

	HIV-positive (N=2982)
Gender, n (%)	
Female	951 (31.9%)
Age in years, median (IQR)	49 (45, 54)
BMI (kg/m^2), median (Q1, Q3)	23.5 (21.4, 26.0)
Waist (cm), median (Q1, Q3)	87 (81, 94)
Smoking, n (%)	
No smoking	1756 (58.9%)
1-10 cigarettes per day	516 (17.3%)
>10 cigarettes per day	672 (22.5%)

HIV-specific characteristics

	HIV-positive (N=2982)
Likely route of transmission, n (%)	
Homosexual sex	881 (29.5%)
CDC classification "C", n (%)	699 (23.4%)
Years since HIV diagnosis, median (Q1, Q3)	19.7 (12.8, 24.4)
Currently on cART, n (%)	2810 (92.5%)
Duration of cART (years), median (Q1, Q3)	5.2 (2.6, 7.8)
Currently on NRTIs, n (%)	2319 (82.5%)
Currently on Pls, n (%)	1550 (55.2%)
Currently on NNRTIs, n (%)	1103 (39.3%)
Currently on other drugs, n (%)	569 (20.6%)
CD4 count (cells/µL), median (Q1, Q3)	648 (474, 841)
Nadir CD4 count (cells/µL), median (Q1, Q3)	200 (86, 300)

Prevalence of comorbidities

	MHMC (N=2982)
Cardiovascular disease, n (%)	142 (4.8%)
Hypertension, n (%)	1088 (36.5%)
Impaired Fasting Glucose, n (%)	602 (20.2%)
Type 2 Diabetes, n (%)	393 (13.2%)
Lipodystrophy, n (%)	2265 (76.0%)
Dyslipidaemia, n (%)	2449 (82.1%)
NAFLD, n (%)	701 (23.5%)
Renal Insufficiency, n (%)	284 (9.5%)
CKD, n (%)	28 (0.9%)
Liver cirrhosis, n (%)	352 (11.8%)
Vitamin D insufficiency, n (%)	2061 (69.1%)
Osteoporosis, n (%)	269 (9%)
COPD, n (%)	91 (3.1%)
Any AIDS malignancy, n (%)	77 (2.6%)

Prevalence of comorbidities

	MHMC (N=2982)	ATHENA (N=10278)
Cardiovascular disease, n (%)	142 (4.8%)	372 (4%)
Hypertension, n (%)	1088 (36.5%)	2379 (23%)
Impaired Fasting Glucose, n (%)	602 (20.2%)	
Type 2 Diabetes, n (%)	393 (13.2%)	578 (6%)
Lipodystrophy, n (%)	2265 (76.0%)	
Dyslipidaemia, n (%)	2449 (82.1%)	
NAFLD, n (%)	701 (23.5%)	
Renal Insufficiency, n (%)	284 (9.5%)	
CKD, n (%)	28 (0.9%)	1399 (14%)
Liver cirrhosis, n (%)	352 (11.8%)	
Vitamin D insufficiency, n (%)	2061 (69.1%)	
Osteoporosis, n (%)	269 (9%)	829 (8%)
COPD, n (%)	91 (3.1%)	
Any AIDS malignancy, n (%)	77 (2.6%)	765 (7%)

Geriatric Age categories	65-7 yrs	>74 yrs
2016	3.8%	0.5%

Geriatric Age categories	65-7 yrs	>74 yrs
2016	3.8%	0.5%
2020	5.7%	0.8

Geriatric Age categories	65-7 yrs	>74 yrs
2016	3.8%	0.5%
2020	5.7%	0.8
2025	14.4%	1.4%

In 15 years time the HIV geriatric population will increase from 4% to 37%

Observed (red area) and predicted burden of Frailty in HIV-infected patients between 2009 and 2030 as simulated by the model

In 15 years time the most frail HIV population will increase from 24% to 48%

Male w

2002 39 yrs 2015 50 yrs 2016 51 yrs

CD4=477 cells/µL HIV1-RNA<40 copies/mL TDF+FTC+NEV

CD4=715 cells/µL HIV1-RNA<40 copies/mL TDF+FTC+NEV

PATIENT AGEING TRAJECTORY

2000	2005	2010	2015	2016
	Co-morbidities	Multi-morbidities	Frailty	Disability

Factors Associated With Limitations in Daily Activity Among Older HIV+ Adults

- ✓ In HIV+ older adults, IADL impairment occurs more frequently among those with neuroimpairment or frailty.
- ✓ Modifiable risk factors (smoking, low physical activity) provide targets for interventions to help maintain independent living

Geriatric Syndromes in Older HIV-Infected Adults

Meredith Greene, MD,*† Kenneth E. Covinsky, MD, MPH,*† Victor Valcour, MD, PhD,*‡
Yinghui Miao, MD, MPH,*† Joy Madamba, BS,§ Harry Lampiris, MD,#|| Irena Stijacic Cenzer, MA,*†

Jeffrey Martin, MD, MPH,¶ and Steven G. Deeks, MD§

FIGURE 1. Frequencies of geriatric syndromes. Each bar reflects the percentage of participants with each geriatric syndrome. Actual percentages are shown at the end of each bar. Horizontal axis only shown to 60%.

Observed (red area) and predicted burden of Falls in HIV-infected patients between 2009 and 2030 as simulated by the model

No geriatric syndrome Geriatric syndrome		
		Falls
	2016	20.4%
	2020	21.9%
	2025	25.3%
	2030	29.8%

In 15 years time 30% of PLWH will experience a geriatric syndrome

Observed (red area) and predicted burden of IADL in HIV-infected patients between 2009 and 2030 as simulated by the model

No disability Disability		
IADL>1		
22.2%		
22.3%		
26.3%		
33.7%		

In 15 years time 34% of PLWH will be disable

How to manage HIV as a chronic condition

*if plasma HIV RNA levels > 50,000 copies/ml, greater than 100-point decline in CD4 count in prior 12 months, or risk factors for CVD.

1.The HIV and Aging Consensus Project: Recommended Treatment Strategies for Clinicians Managing Older Patients with HIV 2011.

2. Fitch K,et al. AIDS. 2006;20:1843-1850;

^{3.} Petoumenos K, et al. HIV Med 2011; 12:412-421;

^{4.} Lindau ST, et al. NEJM. 2007;357:762-774.

Life expectancy vs healthy life expectancy

Ageing 3

Health, functioning, and disability in older adults—present status and future implications

Somnath Chatterji, Julie Byles, David Cutler, Teresa Seeman, Emese Verdes

Healthy life expectancy is a measure that combines mortality and morbidity information in one index, expressing the number of healthy years of life lost because of poor health, and incorporating a range of severities to quantify poor health

Data from the Global Burden of Disease 2010 show that from 1990 to 2010, as life expectancy rose 20 years healthy life expectancy increased more slowly (0.75 years for each year of increase in life expectancy).

- ✓ Chronic diseases
- ✓ Special population
- ✓ Multymorbidity
- ✓ Complex cases
- Ageing

Improving Primary Care for Patients With Chronic Illness

The chronic care model is a guide to higher-quality chronic illness management within primary care. The model predicts that improvement in its 6 interrelated components—self-management support, clinical information systems, delivery system redesign, decision support, health care organization, and community resources—can produce system reform in which informed, activated patients interact with prepared, proactive practice teams. Case studies are provided describing how components of the chronic care model have been implemented in the primary care practices of 4 health care organizations.

JAMA. 2002;288:1775-1779

www.jama.com

Improving Primary Care for Patients With Chronic Illness

CLINICAL MANAGEMENT: Health care organization & Delivery system design

Decision Support: Promote clinical care that is consistent with scientific evidence and patient preferences

HIV & hepatitis drug interactions

- http://www.hiv-druginteractions.org
- http://www.hep-druginteractions.org

Organize patient and population data to facilitate efficient and effective care

Successful Aging... beyond the absence or regardless co-morbidities and HIV

Measure of disease

TO

T18mts

Measure of Health

Organize patient and population data to facilitate efficient and effective care

Successful Aging... beyond the absence or regardless co-morbidities and HIV

T18mts

Organize patient and population data to facilitate efficient and effective care

Organize patient and population data to facilitate efficient and effective care

Organize patient and population data to facilitate efficient and effective care

Organize patient and population data to facilitate efficient and effective care

mysawh Modena

PAZIENTE CHAT Statistiche paziente: 2842

Coach

mysawh Modena Statistiche paziente: 2842

PAZIENTE CHAT

VISIT

Investigator

Coach

& Amministrazione

Profilo

The comunity: Mobilize community resources to meet needs of patients

Search

a

Home

My Health

My Conversations

My Community

My Life with HIV

Useful Links

Download the GoBEYOND app

The goal of HIV treatment is to suppress the amount of HIV in the body (viral load) to undetectable levels. Now that most people who take their medicine can achieve an undetectable viral load, it's time to go beyond this to reach other long-term health goals for people living with HIV – Going Beyond Undetectable.

Download the Gobeyond app

The Multiple Stigma Experience and Quality of Life in Older Gay Men With HIV

Take home message (1/2)

- Comorbidities are the prevalent clinical picture of contemporary HIV disease
- The association of comorbidities into complex multy-morbidity pictures describe patient complexity
- When Multi-morbidity is the norm, frailty and disability turn to be relevant clinical outcomes and allows patient risk stratification beyond the CD4 and HIV VL assessment
- Total patient care allows to integrate the need for reaching un-detectability with the need to take care of comorbidities.

Take home message (2/2)

- HIV Care implies a switch from a Inter-disciplinary approach into a Multi-dimensional comprehensive assessment
- Patient visit diversification must be built in an individualised management plan focused on quality of life and prevention of disability
- The increasing numbers of older patients with frailty, geriatric syndromes and disability depict an "geriatric -HIV" scenario. This model suggests evidence-based screening and monitoring protocols to ensure high-quality care.

The new target

90-90-90-90

90% diagnosed90% on treatment90% virally suppressed

90% fit at 90 years

Thank you....
...and stay fit!