Immunosenescence in HIV infection

Dr Julià Blanco
HIV infection: a double attack to the immune system
THE IMMUNE SYSTEM: EVERYTHING IS LINKED
Immunosenescence. A natural process

![Graph showing the progression of immunosenescence over age]

- **Memory generation**
- **Memory homeostasis**
- **Immunosenescence**

- **Total T cells (%):**
 - Memory T cell
 - Circulating memory T cell
 - Pathogen susceptibility

- **Age (years):**
 - 0
 - 5
 - 10
 - 15
 - 20
 - 25
 - 30
 - 35
 - 40
 - 45
 - 50
 - 55
 - 60
 - 65
 - 70
 - 75
 - 80

- **Infectious disease hospitalization rate (per 10,000 individuals):**
 - 0
 - 200
 - 400
 - 600
 - 800

Source: Nature Reviews | Immunology
The life and death of a T cell

Inflammation (inflam-aging)
Pathogens: Viruses (CHRONIC CMV), bacteria (MICROBIOTA?)
Immunosenescence. A natural process

Cells undergo a limited number of divisions. This number is controlled by the quality of the chromosome ends (TELOMERS)

Cells with damaged (short) telomers undergo apoptosis or become refractory to division signals (senescence)
The life and death of a T cell

<table>
<thead>
<tr>
<th>NAIVE</th>
<th>CM</th>
<th>TM</th>
<th>EM</th>
<th>TD</th>
<th>CCR7</th>
<th>CD27</th>
<th>CD28</th>
<th>PD1</th>
<th>CD57</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

![Diagram showing the life cycle of a T cell](image)
HIV infection

Viral spread
- Massive replication
- GALT destruction

VIRAL DISEASE

Partial Immune control
- Partial control of viral replication
- Tissue damage
- Persistent inflammation

VIRO-IMMUNO DISEASE

Pharmacological control
- Viral persistence
- Incomplete tissue repair

INFLAMMATORY DISEASE?

HIV PERSISTENCE
APOP VI II STUDY

CROSS SECTIONAL STUDY TO ASSESS:

- IMMUNOSENESCENCE AND MATURATION MARKERS IN ART TREATED HIV INFECTED INDIVIDUALS.
- THE IMPACT OF CD4 T CELL RECOVERY

Massanella et al, JTM, 2015, 13:230
DEFINITION OF IMMUNE RECOVERY

![Graph showing CD4 T Cell counts over time for different groups: Concordant High Nadir, Concordant Low Nadir, and Discordant.](image-url)
<table>
<thead>
<tr>
<th></th>
<th>Discordant (n = 23)</th>
<th>Concordant All (n = 33)</th>
<th>Concordant Low Nadir (n = 17)</th>
<th>Concordant High Nadir (n = 16)</th>
<th>Uninfected (n = 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender (% of male)</td>
<td>91</td>
<td>ns</td>
<td>85</td>
<td>76</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>ns</td>
<td>y</td>
<td>42</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Current HAART (% PI-based)</td>
<td>70</td>
<td>*</td>
<td>33</td>
<td>41</td>
<td>25</td>
</tr>
<tr>
<td>HCV coinfection (%)</td>
<td>35</td>
<td>ns</td>
<td>21</td>
<td>36</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>ns</td>
<td>*</td>
<td>0</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Ratio CD4/CD8, Median [IQR]</td>
<td>0.23 [0.17–0.33]</td>
<td>*</td>
<td>0.87 [0.60–1.11]</td>
<td>0.76 [0.54–0.87]</td>
<td>1.06 [0.86–1.1]</td>
</tr>
<tr>
<td>HLA-DR⁺CD95⁺ (% of CD4 T cells), Median [IQR]</td>
<td>16 [7.7–21.6]</td>
<td>*</td>
<td>4.5 [3.7–6.7]</td>
<td>4.7 [4.2–6.3]</td>
<td>4.4 [3.2–7.1]</td>
</tr>
<tr>
<td>CD8 T cell counts (cells/μL), Median [IQR]</td>
<td>940 [754–1,146]</td>
<td>ns</td>
<td>908 [771–1,239]</td>
<td>1,118 [855–1,380]</td>
<td>811 [637–1,121]</td>
</tr>
</tbody>
</table>

a Comparison of concordant and discordant subjects. * denotes *p* < 0.05; ns non significant (Mann–Whitney U or Fisher exact test).

b Comparison of concordant subjects with low and high nadir. * denotes *p* < 0.05; ns non significant (Mann–Whitney U or Fisher exact test).
MATURATION OF CD4 T cells

% of CD4 T cells

T_N T_{CM} T_{TM} T_{EM} T_{TD}
SENESCENCE (CD57 EXP) IN CD4 T CELLS
MATURATION IN CD8 T CELLS
SENEGENCE (CD57 EXP) IN CD8 T CELLS

CD57+ cells (% of CD8 T cells)

- T_N
- T_{CM}
- T_{TM}
- T_{EM}
- T_{TD}

Statistical significance:
- * $p<0.05$
- ** $p<0.01$
- *** $p<0.001$
CONCLUSIONS

- CD4 T CELL MATURATION MARKERS ARE STRONGLY ALTERED IN IMMUNODISCORDANT INDIVIDUALS. AN APPARENT FULL RECOVERY OCCURS IN IMMUNOCONCORDANT INDIVIDUALS

- CD4 T CELL IMMUNOSENESCENCE IS HIGHER IN LONG TERM SUPPRESSED HIV INFECTED INDIVIDUALS COMPARED TO CONTROLS

- CD4 T CELL IMMUNOSENESCENCE IS ASSOCIATED WITH THE LEVEL OF CD4 T CELL RECOVERY
CONCLUSIONS

- CD8 T CELL MATURATION MARKERS SHOW SLIGHT DIFFERENCES IN ART TREATED HIV INFECTED INDIVIDUALS COMPARED TO CONTROL INDIVIDUALS.

- CD8 T CELL IMMUNOSENESCENCE IS HIGHER IN LONG TERM SUPPRESSED HIV INFECTED INDIVIDUALS COMPARED TO CONTROLS.

- CD8 T CELL IMMUNOSENESCENCE IS LARGELY INDEPENDENT OF THE LEVEL OF CD4 T CELL RECOVERY.
CONCLUSIONS

- Despite full recovery of CD4 T cell numbers, immunocompromised treated HIV infected individuals maintain immunological alterations in all CD4 and CD8 T cell compartments.

- Senescence accumulated during untreated infection leaves a irreversible imprint in the immune system.
THANKS

Marta Massanella
Elisabet García
Elisabet Gómez
Dan Ouchi
Victor Urrea
Silvia Marfil
Jorge Carrillo
Marta Curriu
Cecilia Cabrera
Bonaventura Clotet
Julià Blanco

Jordi Puig
Núria Pérez-Álvarez
Roser Escrig
Jessica Toro
Eugènia Negredo