Immunosenescence in HIV infection

Dr Julià Blanco

UVIC UNIVERSITAT DE VIC UNIVERSITAT CENTRAL DE CATALUNYA

HIV infection: a double attack to the immune system

THE SOCIAL NETWORKS: EVERYTHING IS LINKED

THE IMMUNE SYSTEM: EVERYTHING IS LINKED

Immunosenescence. A natural process

Nature Reviews | Immunology

The life and death of a T cell

Inflammation (inflam-aging) Pathogens: Viruses (CHRONIC CMV), bacteria (MICROBIOTA?)

Immunosenescence. A natural process

Cells undergo a limited number of divisions. This number is controlled by the quality of the chromosome ends (TELOMERS)

Cells with damaged (short) telomers undergo apoptosis or become refractory to division signals (senescence)

The life and death of a T cell

NAIVE	СМ	ТМ	EM	TD	
+	+	-	-	-	CCR7
+	+	+	+	-	CD27
+	+	+	+	-	CD28
-	-	-	+	+	PD1
-	-	-	-	+	CD57

CO 60 65 61 36

HIV infection

HIV PERSISTENCE

APOP VI II STUDY

CROSS SECTIONAL STUDY TO ASSESS :

IMMUNOSENESCENCE AND MATURATION MARKERS IN ART TREATED HIV INFECTED INDIVIDUALS.

□ THE IMPACT OF CD4 T CELL RECOVERY

Massanella et al, JTM, 2015, 13:230

DEFINITION OF IMMUNE RECOVERY

	Discordant (n = 23)	а	Concordant			b	Uninfected ($n = 11$)
			All (n = 33)	Low Nadir (n = 17)	High Nadir (n = 16)		
Age (years), Median [IQR]	48 [45–50]	ns	45 [38–49]	48 [42–52]	42 [37–45]	ns	38 [34–47]
Gender (% of male)	91	ns	85	76	94	ns	55
Time since HIV diagnosis (years), Median [IQR]	10.1 [4.1–20.4]	ns	11.8 [7.5–16.6]	12.2 [8.9–17.4]	11.6 [4.9–13.4]	ns	-
Time on HAART (years), Median [IQR]	5.2 [3.5–11.4]	ns	11.2 [7.4–12.6]	11.4 [8.8–12.6]	10.6 [3.7–12.8]	ns	-
Current HAART (% PI-based)	70	*	33	41	25	*	-
HCV coinfection (%)	35	ns	21	36	15	*	0
Ratio CD4/CD8, Median [IQR]	0.23 [0.17-0.33]	*	0.87 [0.60–1.11]	0.76 [0.54–0.87]	1.06 [0.86-1.1]	ns	1.64 [1.31-1.81]
CD4 T cell counts (cells/µL), Median [IQR]	220 [192–253]	*	798 [600–998]	703 [600–896]	881 [672–1,075]	ns	779 [629–1,072]
Nadir (cells/µL), Median [IQR]	64 [15-122]	*	239 [76–345]	76 [19–185]	351 [280–429]	*	-
CD4 T-cell gain (cell/µL/year HAART), Median [IQR]	27 [9–54]	*	53 [46–102]	53 [46-93]	53 [36–124]	ns	-
CD4 T cell (% of lymph), Median [IQR]	14 [10–17]	*	31 [27–39]	29 [27–33]	37 [29–40]	ns	42 [36–45]
CD4 T-cell death (%), Median [IQR]	9.3 [7.5–15.1]	*	4.6 [3.3–5.9]	4.9 [4.4–5.6]	4.3 [2.9–6.1]	ns	4.0 [3.2–4.7]
CD38 ⁺ CD45RA ⁻ (% of CD4 T cells), Median [IQR]	37 [29–41]	×	25.7 [20–32]	26.5 [20–32]	25.1 [20–31]	ns	
HLA-DR ⁺ CD95 ⁺ (% of CD4 T cells), Median [IQR]	16 [7.7–21.6]	×	4.5 [3.7–6.7]	4.7 [4.2–6.3]	4.4 [3.2–7.1]	ns	2.0 [1.5–2.7]
CD8 T cell counts (cells/µL), Median [IQR]	940 [754–1,146]	ns	908 [771–1,239]	1,118 [855–1,380]	811 [637–1,121]	ns	459 [433–548]
CD8 T cell (% of lymph), Median [IQR]	56 [51–61]	×	38 [34–46]	39 [36–47]	36 [32–40]	ns	24 [23–27]
CD8 T cell death (%), Median [IQR]	7.1 [4.8–10.3]	ns	6.5 [5.0–12.4]	8.8 [6.1–11.0]	6.1 [4.8–14.9]	ns	3.9 [3.4–4.9]
CD38 ⁺ CD45RA ⁻ (% of CD8 T cells), Median [IQR]	31 [23–36]	*	23 [19–35]	25 [21–36]	21 [19–26]	ns	9 [5–13]
HLA-DR ⁺ CD95 ⁺ (% of CD8 T cells), Median [IQR]	12.6 [6.9–22.4]	ns	9.1 [5.6–13.0]	9.8 [5.4–13.6]	8.5 [5.6–13.0]	ns	
sCD14 (µg/mL), Median [IQR]	8.4 [7.7–10.2]	ns	8.8 [7.2–9.7]	9.2 [7.6–10.1]	8.0 [7.1–9.2]	ns	4.2 [3.9-4.6]

a Comparison of concordant and discordant subjects. * denotes *p* < 0.05; *ns* non significant (Mann–Withney U or Fisher exact test).

b Comparison of concordant subjects with low and high nadir. * denotes p < 0.05; *ns* non significant (Mann–Withney U or Fisher exact test).

MATURATION OF CD4 T cells

SENESCENCE (CD57 EXP) IN CD4 T CELLS

MATURATION IN CD8 T CELLS

SENESCENCE (CD57 EXP) IN CD8 T CELLS

CONCUSIONS

CD4 T CELL MATURATION MARKERS ARE STRONGLY ALTERED IN IMMUNODISCORDANT INDIVIDUALS. AN APPARENT FULL RECOVERY OCCURS IN IMMUNOCONCORDANT INDIVIDUALS

CD4 T CELL IMMUNOSENESCENCE IS HIGHER IN LONG TERM SUPPRESSED HIV INFECTED INDIVIDUALS COMPARED TO CONTROLS

CD4 T CELL IMMUNOSENESCENCE IS ASSOCIATED WITH THE LEVEL OF CD4 T CELL RECOVERY

CD8 T CELL MATURATION MARKERS SHOW SLIGHT DIFFERENCES IN ART TREATED HIV INFECTED INDIVIDUALS COMPARED TO CONTROL INDIVIDUALS.

- CD8 T CELL IMMUNOSENESCENCE IS HIGHER IN LONG TERM SUPPRESSED HIV INFECTED INDIVIDUALS COMPARED TO CONTROLS
- CD8 T CELL IMMUNOSENESCENCE IS LARGELY INDEPENDENT OF THE LEVEL OF CD4 T CELL RECOVERY

CONCUSIONS

DESPITE FULL RECOVERY OF CD4 T CELL NUMBERS, IMMUNOCONCORDANT TREATED HIV INFECTED INDIVIDUALS MAINTAIN IMMUNOLOGICAL ALTERATIONS IN ALL CD4 AND CD8 T CELL COMPARTMENTS.

SENESCENCE ACCUMULATED DURING UNTREATED INFECTION LEAVES A IRREVERSIBLE? IMPRINT IN THE IMMUNE SYSTEM

THANKS

IrsiCaixa

Institut de Recerca de la Sida

O'IGTP

Marta Massanella

Elisabet García Elisabet Gómez Dan Ouchi Victor Urrea Silvia Marfil Jorge Carrillo Marta Curriu Cecilia Cabrera Bonaventura Clotet Julià Blanco

Jordi Puig Núria Pérez-Álvarez Roser Escrig Jessica Toro Eugènia Negredo

Instituto de Salud Carlos III

Agencia de Gestió d'Ajuts Universitaris i de Recerca

Germans Trias i Pujol Hospital

