Frailty, Aging, and HIV: "Moving" Forward

Catherine Jankowski, PhD, FACSM Associate Professor University of Colorado

Y OF COLORADO ANSCHUTZ MEDICAL CAMPUS

College of Nursing

Objectives

- Review recent research addressing contributors to HIV-frailty
- Appreciate the potential impact of exercise to mitigate HIV-frailty
- Consider quantitative and qualitative findings to inform future research & clinical practice

I'm an exercise physiologist

My goal: to design exercise plans founded in science & adapted to the individual & their values

What is "frailty"?

- Frailty = "You know it when you see it"
 - Dysregulation in multiple physiologic systems
 - A syndrome
 - Associated with high vulnerability
- How is it defined?
 - Multiple indexes to capture
 - Frailty index (deficit accumulation)- Rockwood Index
 - Frailty phenotype defined by Fried (slowness, weakness, weight loss, low activity, fatigue)
 - Objective & subjective measures

Frailty differs in prevalence across study populations

Authors	Site	Study Population	Prevalence of Frailty
Onen	SUN Study	Median age 47; 95% on ART	5%
Erlandson	Colorado	45-65 years; 100% on ART	8%
Onen	Wash U	≥18 years; 75% on ART	9%
Piggott	ALIVE	≥18 years; IVDU; 54% ART	15%
Pathai	Capetown	≥30 years; 87% on ART	18% ART 28% no ART
Rees	Arizona	Screened if CD4<200, weight loss, neuropathy, or noncompliance	19%
Sandkovsky	Nebraska	$n=20 \text{ of } \ge 50 \text{ years}$	20%

Onen, J Frailty Aging 2014; Erlandson, HIV Clin Trials 2012; Onen, J Infect 2009; Piggott, PLOS One 2013; Pathai, JAIDS 2013; Rees, J Vis Exp 2013; Sandkovsky HIV Clin Trials 2013

An Integrated Model of Frailty in HIV

What can be acted upon to prevent or mitigate frailty?

Piggott et al, Curr HIV/AIDS Rep 2016

An Integrated Model of Frailty in HIV

Bi-directionality – difficult to isolate mechanisms; opportunity for interventions to impart effects on multiple levels

Impaired Maximal Cardiorespiratory Capacity (V0₂) in HIV+ vs HIV-

- HIV+ had 41% lower ageadjusted V0₂ peak
- Older HIV+ had 26% lower exercise capacity vs younger HIV+
- 6-min walk distance only ~ 8% less than expected
- Older HIV+ adults have impaired aerobic capacity but maintain ability to complete day-to-day activities

• Exercise capacity can improve with training, thus is an example of a intervention to prevent a limitation from progressing to disability

Oursler, et al. AIDS Res Human Retroviruses 2006.

Gait speed declines faster in HIV men

Frailty-related phenotype is predictive of mortality in HIV+

Weight loss (4 weeks), exhaustion, slowness (can't walk a block), low activity (can't run a short distance)

HIV and Physical Function Impairment Have Synergistic Effects on Mortality

• 12,270 person-visits (N=1627) ALIVE participants (30% with HIV)

What Contributes to Frailty or Physical Performance Limitations?

Association of inflammatory, immune, & hormonal markers with frailty in older men (Erlandson et al, in press)

- MACS includes MSM, aged 50-64 years (Althoff et al, 2014)
 Prevalence of frailty: 12% HIV+ and 9% HIV-
- Substudy of MACS cohort, 1994-2010 Median year of assessment: 2006
- HIV-infected and high-risk uninfected men
- Frailty-related phenotype
 Self-reported weight loss, exhaustion, low activity, slowness
- Frail: 2+ clinic visits w/ 3+ frailty criteria
- Non-frail: no history of any frailty criteria

	HIV-uninfected	Non-frail HIV- infected	Frail HIV-infected	
	N=150	N=141	N=155	Р
Age, y	48.4 [41.5-53.1]	47.7 [40.4-53.0]	49.1 [41.4-53.9]	0.71
Black race, %	16.7	28.4	32.9	0.003
Hispanic, %	5.3	9.9	11	0.18
BMI, kg/m ²	25 [23.5-27.2]	25.6 [23.6-27.0]	23.9 [21.8-27.5]	0.024
Obese, %	10.7	3.7	14.9	0.004
Metabolic syndrome, %	22.7	40.4	48.4	<.001
Current smoker, %	13.3	21.3	46.1	<.001
Illicit drug use, %	63.3	53.9	61.8	0.214
Hepatitis C infection, %	1.3	4.3	17.5	<.001
Detectable viral load, %		41.4	50.3	0.130
HAART, %		72.3	74.8	

(Erlandson et al, in press)

Frailty Associated with Inflammation in HIV-infected Men

Linear regression adjusted for demographic, physical & behavioral variables; HIVrelated variables (e.g., CD4 nadir, HIV-1 viral load) (Erlandson et al, in press)

HIV-infection Associated with Immune Activation & Senescence in Non-frail Men

Linear regression adjusted for demographic, physical & behavioral variables;

HIV-related variables (e.g., CD4 nadir, HIV-1 viral load)

(Erlandson et al, in press)

Frailty Associated with Low DHEAS & T HIV Infection Associated with Insulin Resistance

Linear regression adjusted for demographic, physical & behavioral variables; HIV-related variables (e.g., CD4 nadir, HIV-1 viral load)

(Erlandson et al, in press)

Evidence of Multisystem Dysregulation

• HIV + frailty

- \uparrow inflammation
- \downarrow anabolic steroid hormones
- \uparrow insulin resistance

- HIV infection
 - \uparrow cellular immune activation
 - \uparrow immune senescence
 - \uparrow insulin resistance

Independent of comorbid conditions & age

What can be done?

- Limit exposure to inflammation through lifestyle factors
- Multi-system interventions to mitigate multisystem dysregulation

Frailty in Women Aging with HIV (Gustafson et al, 2016)

- Evaluate the complexity of frailty in women
 - Demographic & ageing-related chronic disease
 - Operationalize frailty for gender comparisons & changes over time
- Substudy of WIHS; 579 HIV- and 1449 HIV+ women
- Frail = 3+ criteria of Fried Frailty Index (0-5 scale)

	HIV – N (%)	HIV+ N (%)		HIV – N (%)	HIV+ N (%)
FFI			Age, years		
0_2	521 (00 0)	1100 (82 8)	< 30	130 (22.5)	112 (7.7)
2 5	521 (50.0)	250 (17 2)	30-39	183(31.6)	462 (31.9)
3-5	38 (10.0)	230 (17.5)	40-49	185 (32.0)	582 (40.2)
MACS	: 9%	12%	50+	81 (14.0)	293 (20.2)

Age-adjusted Odds of Frailty in Women

Variable	OR [95% CI]		
HIV status, cells/mm ³			
Negative	Reference		
Positive, CD4 \geq 500	1.14 [0.79, 1.64]		
Positive, CD4 200-499	1.64 [1.16, 2.32]		
Positive, CD4 < 200	2.63 [1.74, 3.99		
Smoking, current/former	1.78 [1.29, 2.45]		
Income < USD\$12,000	1.92 [1.48, 2.49]		
IV drug use	1.63 [1.23, 2.16]		
BMI (kg/m ²)	0.91 [0.70, 1.18]		

- 1. HIV+ women more likely to be frail, independent of age
- 2. Association between frailty and degree of immunosupression

Age-adjusted Odds of Frailty in HIV-infected Women

Viral load, AIDS-defining illness & chronic illness associated with frailty.

Variable	OR [95% CI]	Variable	OR [95% CI]
Viral load,		Chronic Disease	
copies/mL		Hypertension	1.65 [1.27, 2.16]
< 500	Reference	Diabetes	1.52 [1.11, 2.08]
500 – 100 000	1.28 [0.96, 1.72]	Cancer	1.48 [1.03, 2.12]
> 100 000	2.60 [1.40, 4.82]2.35 [1.75, 3.16]	Fibrinogen-4 index	
		< 1.45	Reference
related illness		1.45-3.25	1.68 [1.22, 2.31]
		> 3.25	3.24 [2.07, 5.06]
		eGFR, ml/min	
		≥ 60	Reference
		45-59.9	1.54 [0.91, 2.60]
		30-49.9	4.63 [1.80, 11.95]
(Gustafson et al. 2016)		< 30	3.98 [1.74, 9.13]

Variable	HIV, Age	+ Demographics	+ Chronic Disease	Combined
HIV & CD4 count				
Negative	Reference			
Positive, CD4 \ge 500	1.14 [0.79, 1.64]			
Positive, CD4 200- 499	1.64 [1.16, 2.32]			
Positive, CD4 < 200	2.63 [1.74, 3.99]			
Age				
< 30	Reference			
30-39	2.48 [1.21, 5.09]			
40-49	4.53 [2.25, 9.11]			
50+	8.72 [4.29, 17.73]			
Hypertension				
FIB4 > 3.25				
eGFR 30-44.9 ml/min				

Variable	HIV, Age	+ Demographics	+ Chronic Disease	Combined
HIV & CD4 count				
Negative	Reference			
Positive, CD4 \ge 500	1.14 [0.79, 1.64]			
Positive, CD4 200- 499	1.64 [1.16, 2.32]			
Positive, CD4 < 200	2.63 [1.74, 3.99]	2.56 [1.67, 3.94]		
Age				
< 30	Reference			
30-39	2.48 [1.21, 5.09]			
40-49	4.53 [2.25, 9.11]			
50+	8.72 [4.29, 17.73]	6.38 [3.10, 13.10]		
Hypertension				
FIB4 > 3.25				
eGFR 30-44.9 ml/min				

Variable	HIV, Age	+ Demographics	+ Chronic Disease	Combined
HIV & CD4 count				
Negative	Reference			
Positive, CD4 \ge 500	1.14 [0.79, 1.64]			
Positive, CD4 200- 499	1.64 [1.16, 2.32]			
Positive, CD4 < 200	2.63 [1.74, 3.99]	2.56 [1.67, 3.94]	2.08 [1.33, 3.28]	
Age				
< 30	Reference			
30-39	2. 48 [1.21, 5.09]			
40-49	4.53 [2.25, 9.11]			
50+	8.72 [4.29, 17.73]	6.38 [3.10, 13.10]	4.84 [2.29, 10.21]	
Hypertension			1.61 [1.22, 2.13]	
FIB4 > 3.25			2.49 [1.55, 4.00]	
eGFR 30-44.9 ml/min			3.70 [1.42, 9.61]	

Variable	HIV, Age	+ Demographics	+ Chronic Disease	Combined
HIV & CD4 count				
Negative	Reference			
Positive, CD4 \ge 500	1.14 [0.79, 1.64]			
Positive, CD4 200- 499	1.64 [1.16, 2.32]			
Positive, CD4 < 200	2.63 [1.74, 3.99]	2.56 [1.67, 3.94]	2.08 [1.33, 3.28]	2.07 [1.29, 3.31]
Age				
< 30	Reference			
30-39	2.48 [1.21, 5.09]			
40-49	4.53 [2.25, 9.11]			
50+	8.72 [4.29, 17.73]	6.38 [3.10, 13.10]	4.84 [2.29, 10.21]	3.71 [1.74, 7.92]
Hypertension			1.61 [1.22, 2.13]	1.67 [1.25, 2.23]
FIB4 > 3.25			2.49 [1.55, 4.00]	2.27 [1.39, 3.69]
eGFR 30-44.9 ml/min			3.70 [1.42, 9.61]	3.74 [1.37, 10.22]

Variable	HIV, Age	+ Demographics	+ Chronic Disease	Combined
HIV & CD4 count				
Negative	Reference			
Positive, CD4 \ge 500	1.14 [0.79, 1.64]			
Positive, CD4 200- 499	1.64 [1.16, 2.32]			
Positive, CD4 < 200	2.63 [1.74, 3.99]	2.56 [1.67, 3.94]	2.08 [1.33, 3.28]	2.07 [1.29, 3.31]
Age				
< 30	Reference			
30-39	2.48 [1.21, 5.09]	2.32 [1.12, 4.79]	2.23 [1.08, 4.60]	2.13 [1.02, 4.43]
40-49	4.53 [2.25, 9.11]	3.54 [1.74, 7.18]	3.53 [1.74, 7.18]	2.86 [1.39, 5.88]
50+	8.72 [4.29, 17.73]	6.38 [3.10, 13.10]	4.84 [2.29, 10.21]	3.71 [1.74, 7.92]
Hypertension			1.61 [1.22, 2.13]	1.67 [1.25, 2.23]
FIB4 > 3.25			2.49 [1.55, 4.00]	2.27 [1.39, 3.69]
eGFR 30-44.9 ml/min			3.70 [1.42, 9.61]	3.74 [1.37, 10.22]

To summarize from MACS and WIHS:

- 1) HIV-related factors contribute strongly to frailty.
- Age contributes strongly to frailty; younger HIV+ adults (4th decade) have increased risk of frailty.
- 3) Modifiable risk factors (e.g., smoking) contribute to frailty.
- 4) Gender-differences in frailty are suggested.

What is "frailty"?

- Frailty = "You know it when you see it"
 - Dysregulation in multiple physiologic systems
 - A syndrome; some HIV specificity
 - Associated with high vulnerability
- How is it defined? Movement ability + comorbidity
 - Multiple indexes to capture
 - Frailty index (deficit accumulation)- Rockwood Index
 - Frailty phenotype defined by Fried (slowness, weakness, weight loss, low activity, fatigue)
- Can Frailty be Reversed?

Nutritional, Physical, Cognitive, and Combination Interventions & Frailty Reversal Among Older Adults: A Randomized Controlled Trial

(Ng et al, 2015)

- 246 Prefrail & frail adults (no HIV)
- Community dwelling
- Average age 70 y
- 61% female
- 6 month intervention
- 6 month follow-up

All interventions were effective in reducing frailty in older adults.

Figure. Frailty score (A) and components weights (B1), strength (B2), physical activity (B3): change from baseline.

What is "frailty"?

- Frailty = "You know it when you see it"
 - Dysregulation in multiple physiologic systems
 - A syndrome; some HIV specificity
 - Associated with high vulnerability
- How is it defined? Movement ability + comorbidity
 - Multiple indexes to capture
 - Frailty index (deficit accumulation)- Rockwood Index
 - Frailty phenotype defined by Fried (slowness, weakness, weight loss, low activity, fatigue)
- Can Frailty be Reversed? Yes
- Can HIV-frailty be Reversed? Not known....yet!

What intervention improves movement & multiple physiologic systems?

Exercise!

- 36 HIV+ and 36 HIV- sedentary men & women aged 50-70
- Cardiovascular & resistance exercise

3 times/week

		_	N=18 HIV+/18 HIV- high intensity
	Moderate intensity		x 12 weeks
	exercise acclimation		N=18 HIV+/18 HIV- mod intensity
			x 12 weeks
(0 1	2	24 Weeks

Exercise for Healthy Aging: Main Objectives

- Primary outcome: Does moderate or high intensity exercise lead to improvements in physical function (1° = chair rise time)?
- Questions:
 - Does the ideal intensity of exercise differ between people with or without HIV?
 - Does a higher intensity of exercise lead to greater reduction in inflammation?
 - Or does more intense exercise lead to more injuries, more inflammation, and less motivation to finish?
 - Other outcomes: V02, SPPB, 1-RM, step count, QoL, depression scores, sleep

Exercise for Health Aging: Preliminary Data

Participants Enrolled						
HIV+ HIV- Total						
Women	4	2	6			
Men	28	25	53			
Age < 60	22	15	37			
Age 60+	10	12	22			

Physical Outcome Measures & Methods					
Cardiopulmonary Capacity	Treadmill walking	V02 peak, ml/kg/min			
Muscle strength – upper body	Bench press	Maximal load, lbs (1-RM)			
Muscle strength – lower body	Leg press	Maximal load, lbs (1-RM)			
Physical Function	Chair rise, 10 repetitions	Time, sec			

Week Number

Week Number

Still to Come

- Inflammatory, hormone & Immune Markers
- IL6, sTNFR1, IGF-1, Testosterone
- Training effects & acute effects of exercise on IL6
- Physical function tests
- Epigenetic changes in skeletal muscle???

- Body Composition DXA
- Fat-free mass
- Fat mass, visceral fat
- Quality of Life
 - Sleep quality
 - Body image
 - Exercise self-efficacy
 - Depressive symptoms

A Qualitative Study to Understand Exercise Barriers in Older, HIV-Infected Adults (n=21) Neff, Jones, Jankowski & Erlandson (unpublished)

Participant Characteristics		Participant Socio-Economic Fac	tors N (%)
Age (Years), Mean (SD)	58 (5.2)	Race	
BMI	24.7 (2.7)	White	15 (68.2)
CD4 Count	570.3 (244.5)	Black or African American	4 (18.2)
Years Since Diagnosis	22.6 (7.0)	More than 1 Race	2 (9.1)
Years since started regularly taking HIV Meds	16.6 (6.7)	Ethnicity	
Female, N (%)	1 (4.5)	Hispanic or Latino	2 (9.1)
HIV-1 RNA	2 (110)	Not Hispanic	19 (86.4)
< 200 conjos/m	1 (4 5)	Highest Level of Education	
	1 (4.5)	Some High School	3 (13.6)
<40 copies/ml	21 (95.5)	High School Graduate or GED	4 (18.2)
Participant Comorbidities		Some College or Associates Degree	6 (27.3)
High Blood Pressure	9 (40.9)	Completed College or Post-College	9 (40.9)
High Cholesterol	11 (50.0)	Current Work Situation	- (,
Cardiovascular Disease (including heart attacks,	1 (19.2)	Unemployed	4 (18.2)
stroke, or heart valve problems)	4 (10.2)	Disability	11 (50.0)
Diabetes	1 (4.5)	Retired	3 (13.6)
Depression, Anxiety, Bipolar Disorders	11 (50.0)	Part or Full Time	7 (31.8)

- 3 Focus groups & 3 individual interviews
- Enrolled in Exercise for Healthy Aging Study

- 1. Dominant Theme: HIV & aging contributed to a sense of being "disabled"
- 2. Dis-ability was a common barrier to exercise before joining the Healthy Aging Study
- 3. Self-efficacy mediates the transition from Dis-ability to Ability

Dis-ability

"Once diagnosed, I kind of lost interest and I just really didn't have the motivation. The fatigue factor was huge"

"About 5 years ago...I went to a gym and worked out a little bit, but I didn't know what to do. And I looked in the mirror and went, 'I can't do this. I have no meat on me. No muscle"

> "I've been HIV positive for 25 years. It's like...I really didn't give a crap"

"I just knew I had to keep going and it wasn't really going to kill me"

"It takes a lot to motivate. Especially when you have a disability like I do and stuff. You need motivation. You need something to commit to."

"It was about ME time"

"Being on disability, without a regular schedule or something like that, you know you're left to your own free will"

"And it was like, wow. I didn't think I had it in me to do it! The little engine. I know I can. I know I can. I know I can."

Ability

"Pain was controlling me from exercising and I couldn't deal with it. And then when I started exercising, I learned to use the exercise to help build inner core to bring the pain down to a minimum"

"So instead of taking Zoloft like I had been, then if I regularly exercise, I don't really need to worry about that"

"Just being able to do things I'd like to do, really. It's more a matter of how I feel."

Second Round of Focus Groups: Persons with HIV not in The Healthy Aging Study

Table 1: Part	ticipant Characteristics		
	Exercise	HIV+ volunteers	
Characteristics	intervention (n=22)*	(n=29)*	
Age (years)	58 (5.2)	59 (6.3)	
Female	1 (4.5)	4 (13.8)	
Black or African American	4 (18.2)	5 (17.2)	
More than 1 Race/Unknown	3 (13.6)	4 (13.8)	
Hispanic or Latino	2 (9.1)	4 (13.8)	
≤ High School Education	7 (31.8)	7 (24.1)	
Some College	6 (27.3)	11 (38.0)	
College or post-grad	9 (40.9)	11 (38.0)	
Current Work Status			
Unemployed	4 (18.2)	5 (17.2)	
Disability	11 (50.0)	13 (44.8)	
Retired	3 (13.6)	7 (24.1)	
Full Time	2 (9.1)	4 (13.8)	
Part Time	5 (22.7)	1 (3.4)	
Years since HIV diagnosis	22.6 (7.0)	18.8 (8.4)	
Years regularly taking ART	16.6 (6.7)	14.5 (8.6)	

Social Ecological Model of McLeroy (1988) as a Framework for Understanding Physical Activity Barriers, Motivators & Facilitators in HIV-infected Older Adults

"stigma is placed upon people with HIV. And they look at us like if we are underweight, there is something wrong with us. If we are overweight, we don't take care of ourselves" "I think the community...this is what we are a part of... The other big component is we are all being monitored... You get to know us. You can see us lifting the weights. You can see us when we come in. That doesn't happen in a regular gym. You walk in, you are a nobody. You are a number.."

Community: Barriers

Loneliness, difficulty meeting people Homelessness or unstable housing HIV stigma Ageism Lack of older, gay community

Community: Facilitators

Accountability Social groups focused on health Active community (Denver) Walkable neighborhood, neighbors

"Right now I feel like there is nobody out there in this world, who is going to miss me, if I don't show up" "When people give me that positive reinforcement of saying I'm an inspiration, that's the interesting thing is living with HIV for 30 years plus, it is nice to know somebody thinks I'm an inspiration"

Interpersonal: Barriers		
Lack of exercise partner/accountability		
Caregiver responsibilities		
Loss of social networks to AIDS; survivors		
guilt		
Anger		
Lack of specific recommendations		
Not routinely asked or avoid answering		

Interpersonal: Facilitators Accountability; partner or pet Caregiver responsibilities Community-shared experiences Stages of change: turning point Positive feedback Relationship & recommendations of provider

Interventions aimed at promoting exercise in older adults with HIV should consider barriers & facilitators at all 5 levels of the Social Ecological Model to increase the likelihood of a successful outcome.

- Inflammation, immune activation, and hormonal dysregulation are associated with frailty in HIV.
- Intervening earlier (middle-age) may have greater impact on the trajectory
- Physiologic & psychosocial factors impact transition from dis-ability to ability

Research Directions

- Reversal of HIV-frailty methods & magnitude
- Sex-specific frailty presentations & strategies?
- Examine physiology underpinning HIV-frailty
 - Inflammation, immune activation & senescence
 - Innate & adaptive immune system required for skeletal muscle repair (Saini et al, 2016)
 - Skeletal muscle epigenetics HIV, exercise
- Behavioral strategies for multisystem benefits

Physiological, clinical, psychosocial

Research Directions (con't)

- Identify barriers & facilitators of behavior change Stigma attached to HIV AND aging
- Develop welcoming exercise environment to support sustainable exercise behaviors
 - Bridge internal validity & generalizability
 - Peer coaching?
- Methods to instill exercise self-efficacy

Support transition from dis-ability to ability

Gràcies! Preguntes?

Agraïments

Study Participants

Kristine Erlandson

Sean McCandless

Hadlai Neff

Nicolas Johs

Jacqueline Jones

Lilyana Gross Thomas Campbell Wendy Kohrt NIH/NIA K23 AG050260 NIH/NCATS UL1 TR001082

College of Nursing UNIVERSITY OF COLORADO ANSCHUTZ MEDICAL CAMPUS